
STA414
Statistical Methods for
Machine Learning II

January 2020
David Duvenaud and Jesse Bettencourt

Motivating Questions:
• How could I build a system to automatically fill in

missing parts of an image, given examples?

• Which test would give me the most useful
information about a patient?

• How can I handle missing data?

• How can I figure out how good a player is from their
wins and losses?

Lecture structure:

• First two hours: Going through concepts, mostly
matching course notes. Medium pace.

• Last hour: Tutorial - worked examples. Slow pace.
Lots of time for questions. Feel free to skip / leave.

• Lecturers: Each week after this one, either me or
Jesse will cover both sections + tutorial.

Today
• Course information and overview

• Expectations, course structure, evaluations

• Learning objectives for course

• Overview of probabilistic machine learning

• Examples

• Tools of the trade

• Tutorial: Installing Julia, basics of Git

 Learning Outcomes: Today

• Know what topics are and aren't in the course.

• An idea of if you have the background + how hard
the material will be.

• What you should be able to do with this knowledge.

• Know how to set up a computing environment

Scope of course
• Designing, fitting, and interpreting parametric probabilistic

models.

• Conditioning, marginalizing, Normalized versus
unnormalized distributions, Graphical models

• Neural nets, gradient-based optimization, automatic
differentiation

• Approximate inference, sampling, variational inference

• A bit of simple decision theory

• Standard software tools: numerics, autodiff, git

Evaluation
• Assignment 0: 10% (Friday, Jan 24)

• Onboarding. Basic distributions, sampling, linear algebra, autodiff, unit tests.

• Assignment 1: 13.3% (Friday, Feb 7)

• Deriving and fitting high-dimensional probabilistic models. (Probably)

• Midterm: 20% (Around Thursday, Feb ~13)

• Basics of graphical models, conditioning, sampling, fitting. (Probably)

• Assignment 2: 13.3% (Friday, Mar 13)

• Fitting multi-factor latent variable models. (Probably)

• Assignment 3: 13.3% (Friday, Apr 3)

• Fitting neural net generative models (e.g. variational autoencoder). (Probably)

• Final Exam: 30% (TBD)

Tools of the trade:
Probability

• Probabilities represent uncertainty
about a fixed but unknown quantity,
conditioned on some information

• Inference and prediction is easy!:
"Just write down the joint probability
of everything, and integrate out
everything you don't know." - MacKay

• No need to pretend to identify
parameters, except for computational
efficiency

Tools of the trade:
Graphical Models

• Giant joint pdfs are hard to reason
about

• Conditional independencies often the
most important fact about a joint
distribution

• Can encode and reason about
conditional independence using
graphs

• Lots of fun algorithms

• De-emphasized, since often simpler
to assume everything is connected

[1] Palmer, Wipf, Kreutz-Delgado, and Rao. Variational EM algorithms for non-Gaussian latent variable models. NIPS 2005.
[2] Ghahramani and Beal. Propagation algorithms for variational Bayesian learning. NIPS 2001.
[3] Beal. Variational algorithms for approximate Bayesian inference, Ch. 3. U of London Ph.D. Thesis 2003.
[4] Ghahramani and Hinton. Variational learning for switching state-space models. Neural Computation 2000.
[5] Jordan and Jacobs. Hierarchical Mixtures of Experts and the EM algorithm. Neural Computation 1994.
[6] Bengio and Frasconi. An Input Output HMM Architecture. NIPS 1995.
[7] Ghahramani and Jordan. Factorial Hidden Markov Models. Machine Learning 1997.
[8] Bach and Jordan. A probabilistic interpretation of Canonical Correlation Analysis. Tech. Report 2005.
[9] Archambeau and Bach. Sparse probabilistic projections. NIPS 2008.
[10] Hoffman, Bach, Blei. Online learning for Latent Dirichlet Allocation. NIPS 2010.

[1] [2] [3] [4]

Gaussian mixture model Linear dynamical system Hidden Markov model Switching LDS

[8,9] [10]

Canonical correlations analysis admixture / LDA / NMF

[6][2][5]

Mixture of Experts Driven LDS IO-HMM Factorial HMM

[7]

Courtesy of Matthew Johnson

Tools of the trade:
Neural Networks

• Not profound or especially
mysterious: Just a large
nonlinear parametric function.

• Can basically fit anything if we
overparameterize enough and
use gradients.

• Main issues: Overfitting, non-
differentiable objectives, hard
to debug

• Show autograd demo
Source: xkcd

Gradient-based Hyperparameter Optimization
Dougal Maclaurin, David Duvenaud, Ryan P. Adams

Motivation

•Hyperparameters are everywhere

•Gradient-free optimization fails in high dimensions

•Why not use gradients? Then we could optimize thousands of hyperparameters!

Stochastic gradient descent is a function

•We want to optimize validation loss

•Validation loss is a function of SGD

• SGD is a smooth function mapping
(init weights, hypers) ! trained weights

• Let’s compute its gradients!

Example: Optimizing learning rate schedules

We can optimize learning rate schedules separately for each layer of a neural network
and each iteration of training:

Learning rate

How did we optimize it? By SGD on top of SGD, using meta-gradients:

Hyper-gradient with respect to learning rate

Optimizing initialization distributions

•We can optimize thousands of hyperparameters

• For instance, detailed weight initialization schemes
•Meta-learned values roughly match 1/

p
(N)

heuristic

Weight initialization scale

Optimizing training data

Synthetic MNIST training examples

Training data can be viewed as just another hyperparameter. We meta-learned MNIST
training examples starting from blank pixels, optimizing validation loss.

Optimizing network architecture

•Can optimize thousands of regularization params.

•Architecture can be controlled through regularization.

•We let the network choose which layers to share in a multi-task problem.

R
ot
at
ed

O
ri
gi
na
l

•Network learned to share weights between related tasks.

• Learned sharing works better than all-or-nothing.

Input Middle Output Train Test
weights weights weights error error

Separate
networks

0.61 1.34

Tied
weights

0.90 1.25

Learned
sharing

0.60 1.13

Chaotic learning dynamics

• Limitation: Gradient can become
chaotic

• a.k.a. exploding gradients

•Happens when learning rate is
near the optimum.

Learning rate

Stochastic gradient descent is reversible

To save memory during reverse-mode di↵erentiation, we run SGD in reverse.

Forward update rule:

xt+1 xt + ↵vt

vt+1 �vt �rL (xt+1)

Reverse update rule:

vt (vt+1 +rL (xt+1)) /�

xt xt+1 � ↵vt

Need to store tiny corrections to each reversal step to ensure exact reversal.

Conclusion

•We can compute gradients of learning procedures...

•This lets us optimize thousands of hyperparameters!

•All code for experiments at github.com/HIPS/hypergrad

•We also wrote an autodi↵ package that works on standard Numpy code:
github.com/HIPS/autograd

Tools of the trade:
Gradient-based optimization

• Unconstrained, high-dimensional,
stochastic, first-order gradient descent
is surprisingly applicable

• Hinton: SGD "works much better than
anyone had any right to expect".

• More parameters -> more progress
before getting stuck.

Tools of the trade:
Automatic Differentiation

• Reverse-mode grads
has same asymptotic
time cost as original
function

• Biggest change in last
10 years of ML practice

• Vector-Jacobian
products are cheap

Source: xkcd

Tools of the trade:
Approximate Inference

• Gradient based
methods:

• Variational inference

• MCMC

• Jointly optimize +
integrate.

• Show autograd demo

What can you build with
these tools?

• Naive Bayes, Mixture of
Gaussians, Logistic
Regression, Bayesian Linear
Regression, Hidden Markov
Models, Factor Analysis

• Neural network classifiers,
LSTMs, RNNs, Transformers,
Convnets, Neural ODEs

• Variational Autoencoders,
Generative Adversarial
Networks, Normalizing Flows

What can do with these
models?

• Extend existing models.

• E.g. What if we know the
age of only some of our
users?

• Sanity check data

• E.g. Which piece of data
in this form is most
surprising?

What's not in scope?
• Statistical Learning Theory. See e.g. Dan

Roy or Murat Erdogdu's courses.

• Fancy neural network architectures. See
e.g. Roger Grosse's course

• Logic-based AI, reasoning, discrete
search. See e.g. Sheila McLiraith or
Faheim Baccus.

• Nonparametrics, e.g. kernel density
estimation, k-NN, Gaussian processes,
support vector machines, Indian Buffet
processes.

Tools of the trade:
Julia and Python

• Julia: Simple, unified interface with autodiff.
Decent error messages.

• More support from course materials.

• Python: Allowed, but initially can't use
frameworks' network layers, initializers, or
optimizers.

• Suggested: Jax, PyTorch

• Gotchas: need to learn both Python and a
framework on top. Bad error messages.

Intimidated?

• Look at HW0. Only need to fill in
blanks. Will release tomorrow.

• Will provide starter code / skeleton for
at least most of the assignments.

• Stick around for intro + tutorial

Why not R?
• Main reason: No reverse-mode autodiff!

• Radford Neal is working on this.

• Other reasons:

• Me, Jesse and some TAs don't know much R.

• Students write slow nested loops (OK in Julia)

• Limited GPU support, limited composability.

Tools of the trade: Git

• Version control is table stakes for
industry, collaboration, your own sanity.

• Github demos add a lot to a resume.

• Assignments will be due through
Github classroom.

Extra Resources
• No required textbook. All tested material in lecture notes on website.

• David MacKay (2003) Information Theory, Inference, and Learning
Algorithms. Great intro, dated on methods.

• Christopher M. Bishop (2006) Pattern Recognition and Machine
Learning. Great intro, dated on methods.

• Kevin Murphy (2012), Machine Learning: A Probabilistic Perspective.
Up-to-date, encyclopaedic.

• Trevor Hastie, Robert Tibshirani, Jerome Friedman (2009) The
Elements of Statistical Learning

• Deep Learning (2016) Goodfellow, Bengio, Courville.

My Origin Story

• https://
bayes.wustl.edu/etj/
prob/book.pdf

• Derives probability
from scratch

• Part manifesto

https://bayes.wustl.edu/etj/prob/book.pdf
https://bayes.wustl.edu/etj/prob/book.pdf
https://bayes.wustl.edu/etj/prob/book.pdf

ML as a bag of tricks

• K-means

• Kernel Density Estimation

• Support Vector Machines

• Boosting

• Random Forests

• K-Nearest Neighbors

• Mixture of Gaussians

• Latent variable models

• Gaussian processes

• Deep neural nets

• Bayesian neural nets

• Attention-based models

Special cases: Extensible family:

Regularization as a bag of
tricks

• Early stopping

• Ensembling

• L2 Regularization

• Gradient noise

• Dropout

• Expectation-Maximization

• Stochastic variational
inference

Fast special cases: Extensible family:

AI as a bag of tricks

• Machine learning

• Natural language processing

• Knowledge representation

• Automated reasoning

• Computer vision

• Robotics

• Deep probabilistic
latent-variable models
+ decision theory

• a.k.a. Model-based
Reinforcement
learning

Russel and Norvig’s
parts of AI: Extensible family:

Stats vs Machine Learning
• Statistician: Look at dataset, consider the problem, design an interpretable

model

• Want guarantees, few assumptions, explanations

• ML: Mostly only predictions. Must handle new data automatically.

• No way around making assumptions. Just make model big enough,
hopefully it includes something close to the truth.

• Model needs to have a million parameters somewhere, reality is messy.

• Can’t use guarantees or bounds in practice, so empirically choose model
details

• Probabilistic ML: Distinguish model from fitting algorithm

Statistical
Learning

vs
Deep

learning
• Conceptually, a lot

going on,
mathematically and
algorithmically simpler

Examples

Probabilistic graphical models

 + structured representations

 + priors and uncertainty

 + data and computational efficiency

 – rigid assumptions may not fit

 – feature engineering

 – top-down inference

Deep learning

 – neural net “goo”

 – difficult parameterization

 – can require lots of data

 + flexible

 + feature learning

 + recognition networks

Differentiable models
• Model distributions implicitly by a variable pushed

through a deep net:

• Approximate intractable distribution by a tractable
distribution parameterized by a deep net:

• Optimize all parameters using stochastic gradient
descent

y = f✓(x)

p(y|x) = N (y|µ = f✓(x),⌃ = g✓(x))

Modeling idea: graphical models on latent variables,
neural network models for observations

Composing graphical models with neural networks for structured representations
and fast inference. Johnson, Duvenaud, Wiltschko, Datta, Adams, NIPS 2016

data space latent space

unsupervised
learning

supervised
learning

Courtesy of Matthew Johnson

Types of Learning
• Supervised Learning: Given input-output pairs (x,y) the

goal is to predict correct output y given a new input x.

• Unsupervised Learning: Given unlabeled data
instances x1, x2, x3… build a model of x, which can be
used for making predictions, decisions.

• Semi-supervised Learning: We are given only a limited
amount of (x,y) pairs, but lots of unlabeled x’s.

• All just special cases of estimating distributions from
data: p(y|x), p(x), p(x, y).

Image Infill
• Just sampling from p(missing pixels | remaining)

• https://www.youtube.com/watch?v=9V7rNoLVmSs

https://www.youtube.com/watch?v=9V7rNoLVmSs

StyleGAN2
• "Just" a big GAN with some training tricks + data preprocessing.

• Representation ends up being intuitive.

• https://www.youtube.com/watch?v=c-NJtV9Jvp0&feature=youtu.be

https://www.youtube.com/watch?v=c-NJtV9Jvp0&feature=youtu.be

Pixel Recurrent Neural Networks (2015)
Aaron van den Oord, Nal Kalchbrenner, Koray Kavukcuoglu

Image to Text

Text to Image

• Parallel Multiscale Autoregressive Density Estimation. Reed et al., 2017

Sequential Data: Video
• Stochastic Video Generation

with a Learned Prior. Emily
Denton, Rob Fergus

Sequential Data: Text

• Attention Is All You Need’
Vaswani et al., 2017

• Variant of RNNs with attention,
aka key-query layers

Scientific Data

• Need to marginalize over all
the things we don't know

https://speakerdeck.com/ixkael/data-driven-models-of-the-milky-way-in-the-gaia-era

https://speakerdeck.com/ixkael/data-driven-models-of-the-milky-way-in-the-gaia-era

Advantages of probabilistic
latent-variable models

• Data-efficient - automatic regularization, can take advantage of more
information

• Composeable - e.g. incorporate data corruption model.

• Handle missing or corrupted data - no imputation, always integration.

• Predictive uncertainty - useful for decision-making.

• Conditional predictions - e.g. if brexit happens, the value of the
pound will fall

• Active learning - What data would be expected to increase our
confidence about a prediction?

• Disadvantages:

• intractable integral over latent variables

Reasons to take this course

• Any sort of 'data scientist' job.

• Getting into research in ML. (but it's a gold rush)

• Doing research in another area, but being able to
build / tweak / question models. (recommended)

• Not being impressed by "it was done with deep
learning / reinforcement learning / AI"

Syllabus

• Course Content

• Collaboration policy

• Communication / extension policy

Discourse
• Piazza sucks

• Unified across CSC412 and STA414

• TAs will monitor, but please answer each other!
Great thing for us to mention letters of rec

• Don't share solutions though

• Should get email invite. If auditing, email
instructors for link

Emails

• Don't email us directly except for personal logistics

• Instructors email: sta414prof@cs.toronto.edu

• TA email: sta414tas@cs.toronto.edu

 Learning Outcomes: Today

• Know what topics are and aren't in the course.

• An idea of if you have the background + how hard
the material will be.

• What you should be able to do with this knowledge.

• Know how to set up a computing environment
(next)

Sotware Tutorial

