
Assignment 1

Student Name and #

February 3, 2020

The goal of this assignment is to get you familiar with the basics of decision theory and
gradient-based model fitting.

1 Decision theory [13pts]

One successful use of probabilistic models is for building spam filters, which take in an email
and take different actions depending on the likelihood that it’s spam.

Imagine you are running an email service. You have a well-calibrated spam classifier that
tells you the probability that a particular email is spam: p(spam|email). You have three
options for what to do with each email: You can show it to the user, put it in the spam
folder, or delete it entirely.

Depending on whether or not the email really is spam, the user will suffer a different amount
of wasted time for the different actions we can take, L(action, spam):

Action Spam Not spam
Show 10 0
Folder 1 50
Delete 0 200

1. [3pts] Plot the expected wasted user time for each of the three possible actions, as a
function of the probability of spam: p(spam|email)

losses = [[10, 0],
[1, 50],
[0, 200]]

num actions = length(losses)

function expected loss of action(prob spam, action)
#TODO: Return expected loss over a Bernoulli random variable
with mean prob spam.
Losses are given by the table above.

end

prob range = range(0., stop=1., length=500)

Make plot

1

using Plots
for action in 1:num actions

display(plot!(prob range, expected loss of action(prob range, action)))
end

2. [2pts] Write a function that computes the optimal action given the probability of spam.

function optimal action(prob spam)
#TODO: return best action given the probability of spam.
Hint: Julia's findmin function might be helpful.

end

3. [4pts] Plot the expected loss of the optimal action as a function of the probability of
spam.

Color the line according to the optimal action for that probability of spam.
prob range = range(0, stop=1., length=500)
optimal losses = []
optimal actions = []
for p in prob range

TODO: Compute the optimal action and its expected loss for
probability of spam given by p.

end
plot(prob range, optimal losses, linecolor=optimal actions)

4. [4pts] For exactly which range of the probabilities of an email being spam should we
delete an email?

Find the exact answer by hand using algebra.

2 Regression

2.1 Manually Derived Linear Regression [10pts]

Suppose that X ∈ Rm×n with n ≥ m and Y ∈ Rn, and that Y ∼ N (XT β, σ2I).

In this question you will derive the result that the maximum likelihood estimate β̂ of β is
given by

β̂ = (XXT)−1XY

1. [1pts] What happens if n < m?

2. [2pts] What are the expectation and covariance matrix of β̂, for a given true value of
β?

3. [2pts] Show that maximizing the likelihood is equivalent to minimizing the squared
error ∑n

i=1(yi − xiβ)2. [Hint: Use ∑n
i=1 a2

i = aT a]

2

4. [2pts] Write the squared error in vector notation, (see above hint), expand the expres-
sion, and collect like terms. [Hint: Use βT xT y = yT xβ and xT x is symmetric]

5. [3pts] Use the likelihood expression to write the negative log-likelihood. Write the
derivative of the negative log-likelihood with respect to β, set equal to zero, and solve
to show the maximum likelihood estimate β̂ as above.

2.2 Toy Data [2pts]

For visualization purposes and to minimize computational resources we will work with 1-
dimensional toy data.

That is X ∈ Rm×n where m = 1.

We will learn models for 3 target functions

• target f1, linear trend with constant noise.

• target f2, linear trend with heteroskedastic noise.

• target f3, non-linear trend with heteroskedastic noise.

using LinearAlgebra

function target f1(x, σ true=0.3)
noise = randn(size(x))
y = 2x .+ σ true.*noise
return vec(y)

end

function target f2(x)
noise = randn(size(x))
y = 2x + norm.(x)*0.3.*noise
return vec(y)

end

function target f3(x)
noise = randn(size(x))
y = 2x + 5sin.(0.5*x) + norm.(x)*0.3.*noise
return vec(y)

end

1. [1pts] Write a function which produces a batch of data x ∼ Uniform(0, 20) and y =
target f(x)

function sample batch(target f, batch size)
x =#TODO
y =#TODO
return (x,y)

end

3

using Test
@testset "sample dimensions are correct" begin

m = 1 # dimensionality
n = 200 # batch-size
for target f in (target f1, target f2, target f3)

x,y = sample batch(target f,n)
@test size(x) == (m,n)
@test size(y) == (n,)

end
end

2. [1pts] For all three targets, plot a n = 1000 sample of the data. Note: You will use
these plots later, in your writeup display once other questions are complete.

using Plots

x1,y1 =#TODO
plot f1 = #TODO

x2,y2 =#TODO
plot f2 = #TODO

x3,y3 = #TODO
plot f3 = #TODO

2.3 Linear Regression Model with β̂ MLE [4pts]

1. [2pts] Program the function that computes the the maximum likelihood estimate given
X and Y . Use it to compute the estimate β̂ for a n = 1000 sample from each target
function.

function beta mle(X,Y)
beta = #TODO
return beta

end

n=1000 # batch size

x 1, y 1 = #TODO
β mle 1 = #TODO

x 2, y 2 = #TODO
β mle 2 = #TODO

x 3, y 3 =#TODO
β mle 3 = #TODO

2. [2pts] For each function, plot the linear regression model given by Y ∼ N (XT β̂, σ2I)
for σ = 1.. This plot should have the line of best fit given by the maximum likelihood
estimate, as well as a shaded region around the line corresponding to plus/minus one
standard deviation (i.e. the fixed uncertainty σ = 1.0). Using Plots.jl this shaded
uncertainty region can be achieved with the ribbon keyword argument. Display 3
plots, one for each target function, showing samples of data and maximum
likelihood estimate linear regression model

4

plot!(plot f1,#TODO)

plot!(plot f2,#TODO)

plot!(plot f3,#TODO)

2.4 Log-likelihood of Data Under Model [6pts]

1. [2pts] Write code for the function that computes the likelihood of x under the Gaussian
distribution N (µ, σ). For reasons that will be clear later, this function should be able
to broadcast to the case where x, µ, σ are all vector valued and return a vector of
likelihoods with equivalent length, i.e., xi ∼ N (µi, σi).

function gaussian log likelihood(µ, σ, x)
"""
compute log-likelihood of x under N(µ,σ)
"""
return #TODO: log-likelihood function

end

Test Gaussian likelihood against standard implementation
@testset "Gaussian log likelihood" begin
using Distributions: pdf, Normal
Scalar mean and variance
x = randn()
µ = randn()
σ = rand()
@test size(gaussian log likelihood(µ,σ,x)) == () # Scalar log-likelihood
@test gaussian log likelihood.(µ,σ,x) ≈ log.(pdf.(Normal(µ,σ),x)) # Correct Value
Vector valued x under constant mean and variance
x = randn(100)
µ = randn()
σ = rand()
@test size(gaussian log likelihood.(µ,σ,x)) == (100,) # Vector of log-likelihoods
@test gaussian log likelihood.(µ,σ,x) ≈ log.(pdf.(Normal(µ,σ),x)) # Correct Values
Vector valued x under vector valued mean and variance
x = randn(10)
µ = randn(10)
σ = rand(10)
@test size(gaussian log likelihood.(µ,σ,x)) == (10,) # Vector of log-likelihoods
@test gaussian log likelihood.(µ,σ,x) ≈ log.(pdf.(Normal.(µ,σ),x)) # Correct Values
end

2. [2pts] Use your gaussian log-likelihood function to write the code which computes the
negative log-likelihood of the target value Y under the model Y ∼ N (XT β, σ2 ∗ I) for
a given value of β.

function lr model nll(β,x,y;σ=1.)
return #TODO: Negative Log Likelihood

end

3. [1pts] Use this function to compute and report the negative-log-likelihood of a n ∈
{10, 100, 1000} batch of data under the model with the maximum-likelihood estimate
β̂ and σ ∈ {0.1, 0.3, 1., 2.} for each target function.

5

for n in (10,100,1000)
println("-------- $n ------------")
for target f in (target f1,target f2, target f3)

println("-------- $target f ------------")
for σ model in (0.1,0.3,1.,2.)

println("-------- $σ model ------------")
x,y = #TODO
β mle = #TODO
nll = #TODO
println("Negative Log-Likelihood: $nll")

end
end

end

4. [1pts] For each target function, what is the best choice of σ?

Please note that σ and batch-size n are modelling hyperparameters. In the expression of
maximum likelihood estimate, σ or n do not appear, and in principle shouldn’t affect the
final answer. However, in practice these can have significant effect on the numerical stability
of the model. Too small values of σ will make data away from the mean very unlikely, which
can cause issues with precision. Also, the negative log-likelihood objective involves a sum
over the log-likelihoods of each datapoint. This means that with a larger batch-size n, there
are more datapoints to sum over, so a larger negative log-likelihood is not necessarily worse.
The take-home is that you cannot directly compare the negative log-likelihoods achieved by
these models with different hyperparameter settings.

2.5 Automatic Differentiation and Maximizing Likelihood [3pts]

In a previous question you derived the expression for the derivative of the negative log-
likelihood with respect to β. We will use that to test the gradients produced by automatic
differentiation.

1. [3pts] For a random value of β, σ, and n = 100 sample from a target function, use
automatic differentiation to compute the derivative of the negative log-likelihood of the
sampled data with respect β. Test that this is equivalent to the hand-derived value.

using Zygote: gradient

@testset "Gradients wrt parameter" begin
β test = randn()
σ test = rand()
x,y = sample batch(target f1,100)
ad grad = #TODO
hand derivative = #TODO
@test ad grad[1] ≈ hand derivative
end

2.5.1 Train Linear Regression Model with Gradient Descent [5pts]

In this question we will compute gradients of of negative log-likelihood with respect to β.
We will use gradient descent to find β that maximizes the likelihood.

6

1. [3pts] Write a function train lin reg that accepts a target function and an initial
estimate for β and some hyperparameters for batch-size, model variance, learning rate,
and number of iterations. Then, for each iteration:

– sample data from the target function
– compute gradients of negative log-likelihood with respect to β

– update the estimate of β with gradient descent with specified learning rate

and, after all iterations, returns the final estimate of β.

using Logging # Print training progress to REPL, not pdf

function train lin reg(target f, β init; bs= 100, lr = 1e-6, iters=1000, σ model = 1.)
β curr = β init
for i in 1:iters

x,y = #TODO
@info "loss: $() β: $β curr" #TODO: log loss, if you want to monitor training

progress
grad β = #TODO: compute gradients
β curr = #TODO: gradient descent

end
return β curr

end

2. [2pts] For each target function, start with an initial parameter β, learn an estimate
for βlearned by gradient descent. Then plot a n = 1000 sample of the data and the
learned linear regression model with shaded region for uncertainty corresponding to
plus/minus one standard deviation.

β init = 1000*randn() # Initial parameter
β learned= #TODO: call training function

#TODO: For each target function, plot data samples and learned regression

2.5.2 Non-linear Regression with a Neural Network [9pts]

In the previous questions we have considered a linear regression model

Y ∼ N (XT β, σ2)

This model specified the mean of the predictive distribution for each datapoint by the product
of that datapoint with our parameter.

Now, let us generalize this to consider a model where the mean of the predictive distribution
is a non-linear function of each datapoint. We will have our non-linear model be a simple
function called neural net with parameters θ (collection of weights and biases).

Y ∼ N (neural net(X, θ), σ2)

7

1. [3pts] Write the code for a fully-connected neural network (multi-layer perceptron)
with one 10-dimensional hidden layer and a tanh nonlinearirty. You must write this
yourself using only basic operations like matrix multiply and tanh, you may not use
layers provided by a library.
This network will output the mean vector, test that it outputs the correct shape for
some random parameters.

Neural Network Function
function neural net(x,θ)

return #TODO
end

Random initial Parameters
θ = #TODO

@testset "neural net mean vector output" begin
n = 100
x,y = sample batch(target f1,n)
µ = neural net(x,θ)
@test size(µ) == (n,)
end

2. [2pts] Write the code that computes the negative log-likelihood for this model where
the mean is given by the output of the neural network and σ = 1.0

function nn model nll(θ,x,y;σ=1)
return #TODO

end

3. [2pts] Write a function train nn reg that accepts a target function and an initial
estimate for θ and some hyperparameters for batch-size, model variance, learning rate,
and number of iterations. Then, for each iteration:

– sample data from the target function
– compute gradients of negative log-likelihood with respect to θ

– update the estimate of θ with gradient descent with specified learning rate

and, after all iterations, returns the final estimate of θ.

using Logging # Print training progress to REPL, not pdf

function train nn reg(target f, θ init; bs= 100, lr = 1e-5, iters=1000, σ model = 1.)
θ curr = θ init
for i in 1:iters

x,y = #TODO
@info "loss: $()" #TODO: log loss, if you want to montior training
grad θ = #TODO: compute gradients
θ curr = #TODO: gradient descent

end
return θ curr

end

8

4. [2pts] For each target function, start with an initialization of the network parameters,
θ, use your train function to minimize the negative log-likelihood and find an estimate
for θlearned by gradient descent. Then plot a n = 1000 sample of the data and the
learned regression model with shaded uncertainty bounds given by σ = 1.0

#TODO: For each target function
θ init = #TODO
θ learned = #TODO

#TODO: plot data samples and learned regression

2.5.3 Non-linear Regression and Input-dependent Variance with a Neural Net-
work [8pts]

In the previous questions we’ve gone from a gaussian model with mean given by linear
combination

Y ∼ N (XT β, σ2)
to gaussian model with mean given by non-linear function of the data (neural network)

Y ∼ N (neural net(X, θ), σ2)
However, in all cases we have considered so far, we specify a fixed variance for our model
distribution. We know that two of our target datasets have heteroscedastic noise, meaning
any fixed choice of variance will poorly model the data.

In this question we will use a neural network to learn both the mean and log-variance of our
gaussian model.

µ, log σ = neural net(X, θ)
Y ∼ N (µ, exp(log σ)2)

1. [1pts] Write the code for a fully-connected neural network (multi-layer perceptron)
with one 10-dimensional hidden layer and a tanh nonlinearirty, and outputs both a
vector for mean and log σ. Test the output shape is as expected.

Neural Network Function
function neural net w var(x,θ)

return #TODO
end

Random initial Parameters
θ = #TODO

@testset "neural net mean and logsigma vector output" begin
n = 100
x,y = sample batch(target f1,n)
µ, logσ = neural net w var(x,θ)
@test size(µ) == (n,)
@test size(logσ) == (n,)
end

9

2. [2pts] Write the code that computes the negative log-likelihood for this model where
the mean and log σ is given by the output of the neural network. (Hint: Don’t forget
to take exp log σ)

function nn with var model nll(θ,x,y)
return #TODO

end

3. [1pts] Write a function train nn w var reg that accepts a target function and an initial
estimate for θ and some hyperparameters for batch-size, learning rate, and number of
iterations. Then, for each iteration:

– sample data from the target function
– compute gradients of negative log-likelihood with respect to θ

– update the estimate of θ with gradient descent with specified learning rate

and, after all iterations, returns the final estimate of θ.

function train nn w var reg(target f, θ init; bs= 100, lr = 1e-4, iters=10000)
θ curr = θ init
for i in 1:iters

x,y = #TODO
@info "loss: $()" #TODO: log loss
grad θ = #TODO compute gradients
θ curr = #TODO gradient descent

end
return θ curr

end

4. [4pts] For each target function, start with an initialization of the network parameters,
θ, learn an estimate for θlearned by gradient descent. Then plot a n = 1000 sample of
the dataset and the learned regression model with shaded uncertainty bounds corre-
sponding to plus/minus one standard deviation given by the variance of the predictive
distribution at each input location (output by the neural network). (Hint: ribbon
argument for shaded uncertainty bounds can accept a vector of σ)
Note: Learning the variance is tricky, and this may be unstable during training. There
are some things you can try:

– Adjusting the hyperparameters like learning rate and batch size
– Train for more iterations
– Try a different random initialization, like sample random weights and bias matri-

ces with lower variance.

For this question you will not be assessed on the final quality of your model.
Specifically, if you fails to train an optimal model for the data that is okay. You are
expected to learn something that is somewhat reasonable, and demonstrates that
this model is training and learning variance.
If your implementation is correct, it is possible to learn a reasonable model with fewer
than 10 minutes of training on a laptop CPU. The default hyperparameters should
help, but may need some tuning.

10

#TODO: For each target function
θ init = #TODO
θ learned = #TODO

#TODO: plot data samples and learned regression

If you would like to take the time to train a very good model of the data (specifically for
target functions 2 and 3) with a neural network that outputs both mean and log σ you can
do this, but it is not necessary to achieve full marks. You can try

• Using a more stable optimizer, like Adam. You may import this from a library.

• Increasing the expressivity of the neural network, increase the number of layers or the
dimensionality of the hidden layer.

• Careful tuning of hyperparameters, like learning rate and batchsize.

11

	Decision theory [13pts]
	Regression
	Manually Derived Linear Regression [10pts]
	Toy Data [2pts]
	Linear Regression Model with MLE [4pts]
	Log-likelihood of Data Under Model [6pts]
	Automatic Differentiation and Maximizing Likelihood [3pts]
	Train Linear Regression Model with Gradient Descent [5pts]
	Non-linear Regression with a Neural Network [9pts]
	Non-linear Regression and Input-dependent Variance with a Neural Network [8pts]

